Quasi-phase-matched acceleration of electrons in a corrugated plasma channel
نویسندگان
چکیده
منابع مشابه
Quasi-phase-matched acceleration of electrons in a corrugated plasma channel
A laser pulse propagating in a corrugated plasma channel is composed of spatial harmonics whose phase velocities can be subluminal. The phase velocity of a spatial harmonic can be matched to the speed of a relativistic electron resulting in direct acceleration by the guided laser field in a plasma waveguide and linear energy gain over the interaction length. Here we examine the fully self-consi...
متن کاملDirect acceleration of electrons in a corrugated plasma waveguide.
Historically, direct acceleration of charged particles by electromagnetic fields has been limited by diffraction, phase matching, and material damage thresholds. A recently developed plasma micro-optic [B. Layer, Phys. Rev. Lett. 99, 035001 (2007)] removes these limitations and promises to allow high-field acceleration of electrons over many centimeters using relatively small femtosecond lasers...
متن کاملQuasi-phase-matched laser wakefield acceleration.
The energy gain in laser wakefield acceleration is ultimately limited by dephasing, occurring when accelerated electrons outrun the accelerating phase of the wakefield. We apply quasi-phase-matching, enabled by axially modulated plasma channels, to overcome this limitation. Theory and simulations are presented showing that weakly relativistic laser intensities can drive significant electron ene...
متن کاملQuasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV
Laser-plasma accelerators of only a centimetre's length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmounta...
متن کاملLaser-driven acceleration of electrons in a partially ionized plasma channel.
The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Special Topics - Accelerators and Beams
سال: 2012
ISSN: 1098-4402
DOI: 10.1103/physrevstab.15.081305